Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Lan Song, Yan-Tuan Li,* Zhi-Yong Wu, Gui-Ling Zhang and Fen Sun

Marine Drug and Food Institute, Ocean University of China, 266003 Qingdao, People's Republic of China

Correspondence e-mail: yantuanli@ouc.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.088$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[μ-trans-N, N^{\prime}-Bis(3-aminopropyl)oxamidato(2-)]bis[(methanol)picratocopper(II)]

The title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$, contains a centrosymmetric binuclear unit in which the oxamide ligand (at a centre of symmetry) acts in a bistridentate fashion and the picrate anion binds to copper(II) in a bidentate mode. The $\mathrm{Cu}^{\text {II }}$ atom displays a distorted octahedral coordination with axial elongation. The binuclear molecules are linked by hydrogen bonds, forming a threedimensional supramolecular architecture.

Comment

Oxamido compounds and their complexes have been investigated extensively (Ruiz et al., 1999) by virtue of their bioactivities (Barta-Szalai et al., 2004) and the versatile bridging function (Ojima \& Nonoyama, 1988). We selected N, N^{\prime}-bis(3aminopropyl)oxamide (oxpn) as a bridging ligand and picrate as a terminal group to synthesize a new binuclear copper(II) complex, (I), with a three-dimensional supramolecular structure via hydrogen bonds. As far as we know, it is the first crystal structure of an oxamide complex using picrate as a terminal group.

(I)

The title complex (Fig. 1) forms a centrosymmetric binuclear molecule with an inversion centre at the mid-point of the $\mathrm{C} 4-\mathrm{C} 4{ }^{\mathrm{i}}$ bond [symmetry code: (i) $2-x,-y,-z$]. The Cu

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids. [Symmetry code: (i) $2-x,-y,-z$.]

Figure 2
A two-dimensional classical hydrogen-bonding network parallel to the plane (100). Dotted lines indicate hydrogen bonds. [Symmetry codes: (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x, \frac{1}{2}-y, z+\frac{1}{2}$.]
atom has a distorted octahedral coordination geometry. The equatorial plane is built up by $\mathrm{N} 1, \mathrm{~N} 2$ and O 1 of the oxpn ${ }^{2-}$ ligand and the phenolic hydroxyl (O2) from the picrate. The axial coordination sites are occupied by an oxygen (O3) of an ortho nitro group of the picrate and the O atom (O 9) of a methanol molecule at greater distances (Table 1). Therefore, the coordination polyhedron of each $\mathrm{Cu}^{\mathrm{II}}$ atom is elongated octahedral $(4+2)$ (Tang et al., 2003).

The N, N^{\prime}-bis(3-aminopropyl)oxamidate, oxpn ${ }^{2-}$, ligand adopts a bis-tridentate trans conformation, forming a sixmembered chelate ring with each metal ion. This $\mathrm{Cu} 1-\mathrm{N} 1-$ $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$ ring has a half-chair conformation, the Cremer \& Pople (1975) puckering-parameter values being $\varphi=$ $-26.4(4)^{\circ}, \theta=130.2(2)^{\circ}$ and $Q=0.535$ (3) \AA.

As a terminal group, the picrate anion assumes a bidentate mode, forming a six-membered chelate ring on each metal ion,

Figure 3
A view of the three-dimensional supramolecular structure with nonclassical hydrogen bonding. Dotted lines indicate hydrogen bonds. [Symmetry codes: (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $x+1, y, z$.]
similar to two other copper complexes using bipyridine as ligand (Liang et al., 2001; Simonov et al., 1985). Atom C5 is displaced by 0.126 (4) \AA from the least-squares plane through the other C atoms in the benzene ring; this is due to the steric hindrance arising from the coordination of O3 and has been observed in a few instances (Beer et al., 1995, 1996).

The crystal structure is stabilized by hydrogen bonding. As shown in Fig. 2, a two-dimensional infinite network parallel to the plane (100) is formed via two classical hydrogen bonds (entries 1 and 2 in Table 2). The adjacent layers are further connected by non-classical hydrogen bonds between aromatic carbon atom (C7) and methanol (third entry in Table 2) to form a three-dimensional supramolecular architecture (Fig. 3).

Experimental

All reagents were of AR grade and were used without further purification. The H_{2} oxpn ligand and its mononuclear complex Cu (oxpn) were prepared according to the literature method (Ojima \& Yamada, 1968). The binuclear complex was prepared by the following procedure. A 5 ml methanol solution of 62.7 mg (0.1 mmol) copper(II) picrate hexahydrate was added dropwise to a 15 ml methanol solution of 26.4 mg (0.1 mmol$) \mathrm{Cu}($ oxpn $)$. The mixture was heated at reflux with stirring for 8 h . The solution was filtered and the filtrate was allowed to stand at room temperature for ten days, giving green crystals (yield 38%). IR (KBr pellet, cm^{-1}): v(N-H) $3164(s, b r)$, $\nu(\mathrm{N}-\mathrm{C}=\mathrm{O}) 1631(v s), v_{\mathrm{as}}\left(\mathrm{NO}_{2}\right) 1557,1501(s), v_{\mathrm{s}}\left(\mathrm{NO}_{2}\right) 1365,1316$ $(s), v(\mathrm{C}-\mathrm{O}) 1271(s)$

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}\right)-\right.$
$\left.\quad\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$
$M_{r}=847.62$
Monoclinic, $P 2_{1} / c$
$a=8.7271(17) \AA$
$b=22.245(4) \AA$
$c=8.2234(16) \AA$
$\beta=92.739(3)^{\circ}$

$$
\begin{aligned}
& V=1594.6(5) \AA^{3} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.765 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.43 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, green
$0.19 \times 0.15 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	2873 independent reflections
\quad diffractometer	2194 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.033$
Absorption correction: none	$\theta_{\max }=25.2^{\circ}$
8436 measured reflections	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0415 P)^{2}\right. \\
\quad+0.8821 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.36 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.969(2)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9788(19)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.952(2)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$2.624(3)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.976(2)$	$\mathrm{Cu} 1-\mathrm{O} 9$	$2.405(2)$

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O9-H9A $\cdots \mathrm{O}^{\text {i }}$	0.84	2.23	$3.030(3)$	161
N1-H1C $\mathrm{O}^{\text {ii }}$	0.90	2.15	$3.017(4)$	161
C7-H7 $\cdots \mathrm{O}^{\text {iii }}$	0.93	2.52	$3.447(4)$	173

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x+1, y, z$.

The O-bound H atom was located in a difference Fourier map, but refined as riding with $\mathrm{O}-\mathrm{H}=0.84 \AA$. All other H atoms were placed in calculated positions, with $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $\mathrm{C}-\mathrm{H}=0.93,0.97$ and $0.96 \AA$ for aromatic, methylene and methyl C atoms, respectively. All H atoms were refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$ (on O$)$, $1.2 U_{\text {eq }}\left(\mathrm{N}\right.$, methylene and aromatic C) or $1.5 U_{\text {eq }}($ methyl C).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 20471056).

References

Barta-Szalai, G., Borza, I., Bozó, É., Kiss, C., Ágai, B., Proszenyák, Á., Keserű, G. M., Gere, A., Kolok, S., Galgóczy, K., Horváth, C., Farkas, S. \& Domány, G. (2004). Bioorg. Med. Chem. Lett. 14, 3953-3956.

Beer, P. D., Drew, M. G. B., Grieve, A. \& Ogden, M. I. (1995). J. Chem. Soc. Dalton Trans. pp. 3455-3466.
Beer, P. D., Drew, M. G. B., Leeson, P. B. \& Ogden, M. I. (1996). Inorg. Chim. Acta, 246, 133-141.
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Liang, F.-P., Chen, Z.-L., Hu, R.-X., Liang, H., Yu, K.-B. \& Zhou, Z.-H. (2001). Acta Chim. Sin. 59, 405-412.
Ojima, H. \& Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-92.
Ojima, H. \& Yamada, K. (1968). Nippon Kagaku Zasshi, 89, 490-494. (In Japanese.)
Ruiz, R., Faus, J., Lloret, F., Julve, M. \& Journaurx, Y. (1999). Coord. Chem. Rev. 193-195, 1069-1117.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Simonov, Y. A., Yampolśkaya, M. A., Matuzenko, G. S., Gerbeleu, N. V., Belśkii, V. K. \& Malinovskii, T. I. (1985). Zh. Strukt. Khim. 26, 160-163.
Tang, J.-K., Si, S.-F., Wang, L.-Y., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Cheng, P. \& Liu, X. (2003). Inorg. Chim. Acta, 343, 288-294.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. University of Oxford, England.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

